Search results for "CHROMOPHORE-BINDING DOMAIN"

showing 5 items of 5 documents

Tips and turns of bacteriophytochrome photoactivation

2020

Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module,…

Models MolecularProtein Conformation116 Chemical sciencesHISTIDINE KINASESSIGNAL-TRANSDUCTIONfotobiologiabacteriophytochrome photoactivation010402 general chemistry01 natural sciencesbakteeritPhytochrome B03 medical and health sciencesProtein structureBacterial ProteinsINDUCED PROTON RELEASEPHYTOCHROME-BCRYSTAL-STRUCTUREPhysical and Theoretical Chemistry030304 developmental biologyINDUCED CONFORMATIONAL-CHANGESPhysics0303 health sciencesRESONANCE RAMANMechanism (biology)AGROBACTERIUM-TUMEFACIENSPhotochemical ProcessesMolecular machine0104 chemical sciencesINFRARED FLUORESCENT PROTEINSCHROMOPHORE-BINDING DOMAINBiophysics1182 Biochemistry cell and molecular biologyvalokemiaproteiinitPhytochromeSignal TransductionPhotochemical & Photobiological Sciences
researchProduct

On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome

2018

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with …

0301 basic medicineModels MolecularCrystallography X-RayBiochemistrybakteeritProtein structurephotoconversionchromophore-binding domainTransferasestructural biologyCRYSTAL-STRUCTURETyrosineDEINOCOCCUS-RADIODURANSbiologyPhytochromeChemistryREARRANGEMENTSProtein Structure and FoldingDeinococcusmutagenesisBinding domainSignal TransductionMODULEPLANT PHYTOCHROMEPhenylalaninefotobiologia03 medical and health sciencesBacterial Proteinsprotein conformationcell signalingprotein structureBACTERIOPHYTOCHROMEMolecular BiologyX-ray crystallographysoluviestintäphytochromeAGP1BINDING DOMAINBinding Sitesta114030102 biochemistry & molecular biologyta1182Deinococcus radioduransCell BiologyChromophorebiology.organism_classificationphotoreceptor030104 developmental biologyStructural biologyFTIRBiophysicsTyrosineproteiinit3111 Biomedicineröntgenkristallografia
researchProduct

The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

2016

Scientific reports 6, 35279 (2016). doi:10.1038/srep35279

crystal structure000Protein ConformationREARRANGEMENTSTemperaturePROTEINCrystallography X-RayphytochromeskidetiedeTRANSDUCTIONArticleX-RAY-DIFFRACTIONCHROMOPHORE-BINDING DOMAINGROUND-STATEddc:000RED LIGHT3111 BiomedicineDeinococcusPhytochromesense organsBACTERIOPHYTOCHROMEFLUORESCENCEroom temperatureCrystallizationPHOTOCONVERSION
researchProduct

Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome

2018

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this ph…

MODULE0301 basic medicinePHOTOACTIVE YELLOW PROTEINSIGNALING MECHANISMabsorption spectraMutantfotobiologiaphytochromesBiochemistryyhteyttäminenbakteeritSTIGMATELLA-AURANTIACA03 medical and health sciencesFRUITING BODY FORMATIONGeneral Materials ScienceMolecular replacementStigmatella aurantiacalcsh:ScienceUNUSUAL BACTERIOPHYTOCHROMEPHOTOCONVERSIONHistidine030102 biochemistry & molecular biologybiologyPhytochromeChemistryCRYSTALLOGRAPHYta1182photosynthetic bacteriaphotoreceptorsGeneral ChemistryChromophoreCondensed Matter Physicsbiology.organism_classification030104 developmental biologyCHROMOPHORE-BINDING DOMAINBiophysicsmyxobacterialcsh:Q3111 BiomedicinePhotosynthetic bacteriaproteiinitMOLECULAR REPLACEMENTBinding domainIUCrJ
researchProduct

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2020

Please check the README file for more information about the dataset.

chromophore-binding domains of Bacterial phytochromeX-ray Free-electorn LasersXFELData_FILESBL3: EH2Serial Femtosecond CrystallographyGeneralLiterature_MISCELLANEOUSComputingMethodologies_COMPUTERGRAPHICSSACLA
researchProduct